如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF.求证:.
网友回答
证明:如图,连接ED,FD.
∵BE和CF都是直径,
∴ED⊥BC,FD⊥BC,
∴D,E,F三点共线,
连接AE,AF,则∠AEF=∠ABC=∠ACB=∠AFD,
∴△ABC∽△AEF,
作AH⊥EF,垂足为H,
又∵AP⊥BC,DF⊥BC,
∴四边形APDH是矩形,
∴AH=PD,
∵△ABC∽△AEF,
∴,
∴,
∴.
解析分析:先连接DE、DF,利用直径所对的圆周角等于90°,可证D、E、F三点共线,再连接AE、AF,利用等腰三角形的性质、圆内接四边形外角的性质可得∠AEF=∠ABC=∠ACB=∠AFD,易证△ABC∽△AEF,再做AH⊥DF,易证四边形APDH是矩形,于是AH=DP,而△ABC∽△AEF,那么EF:BC=AH:AP,等量代换易证
tan∠PAD=.
点评:本题考查了圆的直径所对的圆周角等于90°、圆周角定理、矩形的判定、圆内接四边形外角的性质、相似三角形的判定和性质、正切的计算、相似三角形高的比等于相似比.主要是作辅助线,证明D、E、F三点共线.