如图1,已知△ABC与△DCE都是等腰直角三角形,AC=BC,DC=EC,∠ACB=∠DCE=90°,点D在AC上,直线BD交AE于点F.
(1)请补充完整证明“BD=AE,BF⊥AE”的推理过程;
证明:在△ACE与△BCD中
∵(________)
∴△ACE≌△BCD(SAS)
∴BD=AE,∠CAE=∠CBD(全等三角形的对应角相等)
∵∠ACE=90°
∴∠CAE+∠AEC=90°(________)
∴∠CBD+∠AEC=90°(等量代换)
∴________
∴BF⊥AE(垂直的定义)
(2)将△DCE绕着点C旋转,在旋转过程中保持△DCE的大小与形状均不变,那么,当△DCE旋转至图2的位置时,(1)中的结论是否仍然成立?为什么?
网友回答
(1)证明:∵在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴BD=AE,∠CAE=∠CBD,
∵∠ACE=90°,
∴∠CAE+∠AEC=90°(直角三角形的两锐角互余),
∴∠BFE=90°,
∴BF⊥AE,
故