如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G(1)求证:△AMF∽△BGM;(2)连接FG,如果α=45°

发布时间:2020-08-07 16:54:37

如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G
(1)求证:△AMF∽△BGM;
(2)连接FG,如果α=45°,AB=,BG=3,求FG的长.

网友回答

(1)证明:∵∠DME=∠A=∠B=α,
∴∠AMF+∠BMG=180°-α,
∵∠A+∠AMF+∠AFM=180°,
∴∠AMF+∠AFM=180°-α,
∴∠AFM=∠BMG,
∴△AMF∽△BGM;

(2)解:当α=45°时,可得AC⊥BC且AC=BC,
∵M为AB的中点,
∴AM=BM=2,
∵△AMF∽△BGM,
∴,
∴AF===,AC=BC=4?cos45°=4,
∴CF=AC-AF=4-=,CG=BC-BG=4-3=1,
∴FG===.
解析分析:(1)由∠DME=∠A=∠B=α,易得∠AMF+∠BMG=180°-α,∠AMF+∠AFM=180°-α,即可得∠AFM=∠BMG,然后由有两角对应相等的三角形相似,即可证得△AMF∽△BGM;
(2)由α=45°,可得AC⊥BC且AC=BC,又由△AMF∽△BGM,根据相似三角形的对应边成比例,即可求得AF的长,继而可求得CF与CG的长,然后由勾股定理求得FG的长.

点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质与判定以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.
以上问题属网友观点,不代表本站立场,仅供参考!