经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时

发布时间:2020-08-06 08:44:23

经销店为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)该经销店要获得最大月利润,售价应定为每吨多少元?

网友回答

解:(1)售价降了260-240=20(元),
∵当每吨售价每下降10元时,月销售量就会增加7.5吨,
∴月销售量就会增加7.5×2=15吨,
则此时的月销售量为45+15=60吨;

(2)若每吨材料售价为x(元),
∵当每吨售价每下降10元时,月销售量就会增加7.5吨,
∴月销售量就会增加×7.5=(260-x)吨,即月销售量为[45+(260-x)]吨,
∴该经销店的月利润为y=(x-100)[45+(260-x)]=-0.75(x-210)2+9075,
∵当x=210元时,总利润y的最大值为9075,
∴该经销店要获得最大月利润,售价应定为每吨210元.
解析分析:(1)若每吨售价为240元,可得出降价了260-240=20元,利用当每吨售价每下降10元时,月销售量就会增加7.5吨,求出月销售量的增加值,即可求出此时的月销售量;
(2)若每吨材料售价为x(元),可得出降价了(260-x)元,利用当每吨售价每下降10元时,月销售量就会增加7.5吨,表示出月销售量的增加值,进而得到此时的月销售量,再由每吨的利润=售价-100,然后由经销店的月利润为y(元)=月销售量×每吨的利润,表示出y与x的二次函数解析式,配方后利用二次函数的图象与性质,即可求出该经销店要获得最大月利润的售价.

点评:此题考查了二次函数的应用,其中熟练运用“当每吨售价每下降10元时,月销售量就会增加7.5吨”是解本题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!