如图,已知PA、PB分别切⊙O于点A、B,点C在⊙O上.(1)证明:PA=PB;(2)∠BCA=60°,AP=3,求图中阴影部分的面积.(结果保留根号和π)

发布时间:2020-08-07 03:15:14

如图,已知PA、PB分别切⊙O于点A、B,点C在⊙O上.
(1)证明:PA=PB;
(2)∠BCA=60°,AP=3,求图中阴影部分的面积.(结果保留根号和π)

网友回答

解:(1)连接OA、OB,PA,
∵PA、PB分别切⊙O于点A、B,
∴∠PAO=∠PBO=90°,
∵在Rt△PAO与Rt△PBO中,

∴Rt△PAO≌Rt△PBO中(HL),
∴PA=PB

(2)∵∠BCA=60°,
∴∠AOB=120°,
∴∠AOP=60°
∵AP=3
∴AO=
∴AD=,OD=
∴AB=
∴S阴影=S扇形OAB-S△OAB=-=
解析分析:(1)连接OA、OB,PA,证得Rt△PAO≌Rt△PBO中(HL)即可证得结论;
(2)利用S阴影=S扇形OAB-S△OAB求解.

点评:本题考查了切线的性质及扇形的面积计算方法,综合性较强,但难度一般.
以上问题属网友观点,不代表本站立场,仅供参考!