如图,已知C、D是双曲线y=在第一象限分支上的两点,直线CD分别交x轴、y轴于A、B两点.设C(x1,y1)、D(x2,y2),连接OC、OD(O是坐标有点),若∠BOC=∠AOD=α,且tanα=,OC=.
(1)求C、D的坐标和m的值;
(2)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明,若不存在,说明理由.
网友回答
解:(1)过点C作CG⊥x轴于G,
则CG=y1,OG=x1,
在Rt△OCG中,∠GCO=∠BOC=α,
∵tanα=,
∴,
即y1=3x1,
又∵OC=,
∴x12+y12=10,
即x12+(3x1)2=10,
解得:x1=1或x1=-1(不合题意舍去)
∴x1=1,y1=3,
∴点C的坐标为C(1,3).
又点C在双曲线上,可得:m=3,
过D作DH⊥x轴于H,则DH=y2,OH=x2
在Rt△ODH中,tanα=,
∴,
即x2=3y2,
又∵x2y2=3,
∴y2=1或y2=-1(不合舍去),
∴x2=3,y2=1,
∴点D的坐标为D(3,1);
(2)双曲线上存在点P,使得S△POC=S△POD,
这个点就是∠COD的平分线与双曲线的交点
∵点D(3,1),
∴OD=,
∴OD=OC,
∴点P在∠COD的平分线上,
则∠COP=∠POD,又OP=OP
∴△POC≌△POD,
∴S△POC=S△POD.
解析分析:(1)过点C作CG⊥x轴于G,在直角△OCG中,已知tanα=,OC=,就可以求出CG,OQ的长,就得到C点的坐标.根据待定系数法得到反比例函数的解析式.过D作DH⊥x轴于H,则DH=y2,OH=x2,在Rt△ODH中,tanα=,∴,即y2=3x2,由x2y2=3解得DH的长,进而求出OH,得到D点的坐标.
(2)双曲线上存在点P,使得S△POC=S△POD,这个点就是∠COD的平分线与双曲线的交点,易证△POC≌△POD,则S△POC=S△POD
点评:本题主要是根据勾股定理和三角函数的定义解决问题,通过它们把结论转化为方程的问题来解题.