如图,已知P是等边△ABC内的一点,连接AP、BP,将△ABP旋转后能与△CBP′重合,根据图形回答:(1)旋转中心是哪一点?(2)旋转角是几度?(3)连接PP′后,

发布时间:2020-08-08 16:55:40

如图,已知P是等边△ABC内的一点,连接AP、BP,将△ABP旋转后能与△CBP′重合,根据图形回答:(1)旋转中心是哪一点?
(2)旋转角是几度?
(3)连接PP′后,△BPP′是什么三角形?

网友回答

解:(1)∵△ABC为等边三角形,
∴AB=BC,∠ABC=60°.
又∵将△ABP旋转后能与△CBP′重合,
∴AB与CB重合,
∴旋转中心是点B;

(2)∵将△ABP绕点B顺时针旋转后能与△CBP′重合,
∴旋转角等于∠ABC=60°;

(3)△BPP′等边三角形.理由如下:
∵旋转角为60°,即∠PBP′=60°,BP=BP′,
∴△BPP′等边三角形.
解析分析:(1)(2)因为△ABC为等边三角形,所以AB=BC,∠ABC=60°,△ABP旋转后能与△CBP′重合,显然是AB与CB重合,由此可判断旋转中心是点B,旋转角是60°;
(3)根据旋转角和对应边可判断△BPP′是等边三角形.

点评:本题考查了旋转的性质,等边三角形的判定与性质,难度不大,熟练掌握旋转的定义与性质是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!