△ABC中,三边长a、b、c满足,且关于x的方程有两个相等的实数根.
(1)试判断△ABC的形状;
(2)求△ABC的面积.
网友回答
解:(1)根据题意得,
∴a+b=9,
∴c=0+0+5=5,
∵△=4a2-4(5+b)(5-b)=0,
∴a2+b2=(5)2,
∴a2+b2=c2,
∴△ABC是以c为斜边的直角三角形;
(2)∵△ABC是以c为斜边的直角三角形,
∴S△ABC=ab,
∵a+b=9,
∴a2+2ab+b2=81,
∴75+2ab=81,
∴ab=3,
∴S△ABC=.
解析分析:(1)根据二次根式有意义的条件易得a+b=9,c=5,再根据根的判别式得到△=4a2-4(5+b)(5-b)=0,变形有a2+b2=(5)2,
则a2+b2=c2,然后根据勾股定理的逆定理判断△ABC的形状;
(2)由a+b=9得到a2+2ab+b2=81,则75+2ab=81,所以ab=3,然后根据直角三角形面积公式计算即可.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了二次根式有意义的条件以及勾股定理的逆定理.