小明、小华两人各自投掷一个质地均匀的正方体骰子,观察向上一面的点数.
(1)求两个骰子点数的和是9的概率;
(2)小明、小华约定:如果两者之积为奇数,那么小明得1分.如果两者之积为偶数,那么小华得1分.连续投掷20次,谁得分高,谁就获奖.你认为这个游戏公平吗?如果不公平,请为他们设计一个公平的游戏.
网友回答
解:不妨把两个骰子分别记为第1个和第2个,列出下表:
第2个
第1个1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可以看出,小明、小华各投掷一个骰子,可能出现的结果有36个,它们出现的可能性相等.
(1)满足两个骰子点数的和是9(记为事件A)的结果有4个,
所以P(A)=;
(2)不公平.
因为满足积为奇数(记为事件B)的结果有9个,积为偶数(记为事件C)的结果有27个,
所以P(B)=,P(C)=.
所以P(B)>P(C),即小明得分机会大于小华得分机会.
改为:如果两者之积为奇数,那么小明得,
如果两者之积为偶数,那么小华得.
连续投掷20次,谁得分高,谁就获奖.
解析分析:游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.
点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.