如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值

发布时间:2020-08-08 20:33:38

如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为________.

网友回答


解析分析:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20E?sin∠EOH=20E?sin60°,当半径OE最短时,EF最短,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH.

解答:解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,
如图,连接OE,OF,过O点作OH⊥EF,垂足为H,
∵在Rt△ADB中,∠ABC=45°,AB=2,
∴AD=BD=2,即此时圆的直径为2,
由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,
∴在Rt△EOH中,EH=OE?sin∠EOH=1×=,
由垂径定理可知EF=2EH=.
以上问题属网友观点,不代表本站立场,仅供参考!