如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.

发布时间:2020-08-05 15:01:24

如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

网友回答

证明:∵BE⊥AD,BE⊥AD,
∴∠AEB=∠DFC=90°,
∵AB∥CD,
∴∠A=∠D,
在△AEB与△DFC中,

∴△AEB≌△DFC(ASA),
∴BE=CF.
∵BE⊥AD,BE⊥AD,
∴BE∥CF.
∴四边形BECF是平行四边形.

解析分析:通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.

点评:本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.
以上问题属网友观点,不代表本站立场,仅供参考!