如图所示,有一块面积为1的正方形纸片ABCD,M、N分别为AD、BC的边上中点,将C点折至MN上,落在P点的位置,折痕为BQ,连接PQ.(1)求MP;(2)求证:以P

发布时间:2020-08-08 17:33:55

如图所示,有一块面积为1的正方形纸片ABCD,M、N分别为AD、BC的边上中点,将C点折至MN上,落在P点的位置,折痕为BQ,连接PQ.
(1)求MP;
(2)求证:以PQ为边长的正方形的面积等于.

网友回答

(1)解:连接BP、PC,由折法知点P是点C关于折痕BQ的对称点.
∴BQ垂直平分PC,BC=BP.
又∵M、N分别为AD、BC边上的中点,且ABCD是正方形,
∴BP=PC.
∴BC=BP=PC.
∴△PBC是等边三角形.
∵PN⊥BC于N,BN=NC=BC=,∠BPN=×∠BPC=30°,
∴PN=,MP=MN-PN=.

(2)证明:由折法知PQ=QC,∠PBQ=∠QBC=30°.
在Rt△BCQ中,QC=BC?tan30°=1×=,
∴PQ=.
∴以PQ为边的正方形的面积为.
解析分析:(1)根据折叠的性质,可得BQ垂直平分PC;
进而可得△PBC是等边三角形,故可得PN的值.
根据图形的关系可MP=MN-PN,代入数据可得
以上问题属网友观点,不代表本站立场,仅供参考!