已知:如图,△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,点E在AB的延长线上,∠E=45°,若AB=8,求BE的长.

发布时间:2020-08-05 12:01:21

已知:如图,△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,点E在AB的延长线上,∠E=45°,若AB=8,求BE的长.

网友回答

解:∵∠ACB=90°,∠A=30°,AB=8,
∴BC=AB=×8=4,
∵CD⊥AB,
∴∠BCD+∠ABC=90°,
又∵∠A+∠ABC=90°,
∴∠BCD=∠A=30°,
∴BD=BC=×4=2,
在Rt△BCD中,CD===2,
∵∠E=45°,
∴∠DCE=90°-45°=45°,
∴∠DCE=∠E,
∴DE=CD=2,
∴BE=DE-BD=2-2.

解析分析:根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再根据同角的余角相等求出∠BCD=30°,然后求出BD,根据勾股定理列式求出CD的长,根据等角对等边求出DE=CD,再根据BE=DE-BD进行计算即可得解.

点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,同角的余角相等的性质,等角对等边的性质,熟记各性质是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!