如图,在△ABC中,∠C>∠B,AD、AE分别是△ABC的高和角平分线.
(1)若∠B=30°,∠C=50°,求∠DAE的度数;
(2)若∠B=x°,∠C=y°,求∠DAE的度数.
网友回答
解:(1)∵AD是高线,
∴在直角△ACD中,∠CAD=90°-∠C=90°-50°=40°;
∵在△ABC中,∠CAB=180°-∠B-∠C=180°-30°-50°=100°,
∵AE是角的平分线,
∴∠CAE=∠CAB=50°,
∴∠DAE=∠CAE-∠CAD=50°-40°=10°;
(2)根据(1)可以得到:∠CAD=(90-y)°,
∠CAE=∠CAB=(180-x-y)°.
∴∠DAE=∠CAE-∠CAD=(180-x-y)-(90-y)°=(y-x)°.
解析分析:(1)在直角△ACD中,求得∠CAD,然后利用角平分线的定义求得∠CAE的度数,根据∠DAE=∠CAE-∠CAD可以求解;
(2)与(1)的解法相同.
点评:本题考查了三角形的内角和等于180°,以及角平分线的定义,是基础题.