如图,在矩形ABCD中,AB=3,BC=9,把矩形ABCD沿对角线BD折叠,使点C与点F重合,BF交AD于点M,过点C作CE⊥BF于点E,交AD于点G,则MG的长=_

发布时间:2020-08-08 17:14:04

如图,在矩形ABCD中,AB=3,BC=9,把矩形ABCD沿对角线BD折叠,使点C与点F重合,BF交AD于点M,过点C作CE⊥BF于点E,交AD于点G,则MG的长=________.

网友回答


解析分析:首先,设AM长为x,在Rt△ABM中,根据勾股定理可得AB2+x2=BM2,BM=MD=9-x 可以解得x=4,又因为△MEG和△MFD相似,同时△GDC和△MEG相似的,所以△GDC和△DFM相似,可以得出CD:MF=GD:DF,即可得到GD=,所以MG=MD-GD=5-=.

解答:设AM长为x.
在Rt△ABM中,AB2+x2=BM2,BM=MD=9-x
则32+x2=(9-x)2,
解得x=4,
BM=MD=9-x=5,
∵△GEM∽△DFM,△GDC∽△GEM,
∴△GDC∽△DFM,
∴CD:FM=GD:DF,即3:(9-5)=GD:3
解得GD=,
所以MG=MD-GD=5-=.
以上问题属网友观点,不代表本站立场,仅供参考!