函数Y=sin²(2x-π/6)-sin(2x-π/6),0≤x≤π/2的值域

发布时间:2019-08-08 14:32:19

函数Y=sin²(2x-π/6)-sin(2x-π/6),0≤x≤π/2的值域

推荐回答

Y=sin²(2x-π/6)-sin(2x-π/6)

=[sin(2x-π/6)-1/2]²-1/4

∵0≤x≤π/2

∴-π/6≤2x-π/6≤5π/6

∴-1/2≤sin(2x-π/6)≤1

∴-1≤sin(2x-π/6)-1/2≤1/2

0≤[sin(2x-π/6)-1/2]²≤1

-1/4≤[sin(2x-π/6)-1/2]²-1/4≤3/4

值域为:[-1/4,3/4]

其他回答

因为Y‘=2[2sin(2x-π/6)cos(2x-π/6)-cos(2x-π/6)]

            =2cos(2x-π/6)[2sin(2x-π/6)-1 ]

则驻点:2x-π/6+kπ=π/2+kπ,x=(π/6+π/2)÷2=π/6

因为x=π/6,该点的左导数<0,右侧导数>0,所以x=π/6是最小值

值域为≥0

以上问题属网友观点,不代表本站立场,仅供参考!