设有实数域上n阶方阵A,A的顺序主子式全为正的,而且非对角元全为负的.证明:逆矩阵A^-1的每个元素

发布时间:2021-03-08 22:33:22

设有实数域上n阶方阵A,A的顺序主子式全为正的,而且非对角元全为负的.证明:逆矩阵A^-1的每个元素全为正的.

网友回答

对A做LU分解,用归纳法容易证明L和U具有同样的符号结构(这种矩阵叫M-矩阵),即L和U的对角元为正数、非对角元为负数(非零的部分)、顺序主子式大于零.
于是L^{-1}和U^{-1}都是非零元皆为正数的三角矩阵,A^{-1}=U^{-1}L^{-1}是正矩阵.
以上问题属网友观点,不代表本站立场,仅供参考!