如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.

发布时间:2020-08-06 16:22:30

如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.

网友回答

解:设∠DAE=x°,则∠BAC=40°+x°.
∵∠B=∠C,∴2∠C=180°-∠BAC
∴∠C=90°-∠BAC=90°-(40°+x°)
同理∠AED=90°-∠DAE=90°-x°
∴∠CDE=∠AED-∠C=(90°-x°)-[90°-(40°+x°)]=20°.
解析分析:在这里首先可以设∠DAE=x°,然后根据三角形的内角和是180°以及等腰三角形的性质用x分别表示∠C和∠AED,再根据三角形的一个外角等于和它不相邻的两个内角和进行求解.

点评:这里注意利用未知数抵消的方法解出了正确
以上问题属网友观点,不代表本站立场,仅供参考!