如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为________.
网友回答
5
解析分析:此题在旋转的基础上,巧妙作辅助线:作DG⊥BC于G,作EF⊥AD于F.构造全等三角形和矩形,根据全等三角形的性质和矩形的性质进行计算.
解答:解:如图,作DG⊥BC于G,作EF⊥AD于F.得矩形ABGD,则BG=AD=2.
∵△ADE的面积为3.
∴EF=3.
根据旋转的性质,可知DE=DC,DE⊥DC,∠CDG=∠EDF.
∴△CDG≌△EDF.
∴EF=GC=3,
∴BC=BG+GC=2+3=5.
点评:本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.