长方形、正方形和圆,它们的周长相等,则( )的面积最小.A.长方形B.正方形C.圆D.不能确定
网友回答
C
解析分析:要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.
解答:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:=,面积为:π××=≈20.38;正方形的边长为:16÷4=4,面积为:4×4=16;长方形长宽越接近面积越大,就取长为5宽为3,面积为:5×3=15,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形,圆面积最大.故选:C.
点评:此题主要考查长方形、正方形、圆形的面积公式及灵活运用,解答此题可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.