如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是A.2B

发布时间:2020-08-05 02:07:39

如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是A.2B.2.5C.3D.3.5

网友回答

C

解析分析:分别过A、B两点作x轴的垂线,构成直角梯形,根据AC=BC,判断OC为直角梯形的中位线,得出OD=OE=a,根据双曲线解析式确定A、B两点的坐标及AD、BE的长,根据S△AOB=S梯形ADBE-S△AOD-S△BOE求解.

解答:分别过A、B两点作AD⊥x轴,BE⊥x轴,垂足为D、E,
∵AC=CB,
∴OD=OE,
设A(-a,),则B(a,),
故S△AOB=S梯形ADBE-S△AOD-S△BOE=(+)×2a-a×-a×=3.
故选C.

点评:本题考查了反比例函数的综合运用,关键是作辅助线构造直角梯形,根据AC=BC,得出OC为直角梯形的中位线,利用面积的和差关系求解.
以上问题属网友观点,不代表本站立场,仅供参考!