已知二次函数y=ax2-2ax+b(a≠0)的图象与x轴分别交于A、B两点(A点在B点左侧),与y轴交于点C,直线y=-x+b经过点B、C,且B点坐标为(3,0).(

发布时间:2020-08-09 06:29:48

已知二次函数y=ax2-2ax+b(a≠0)的图象与x轴分别交于A、B两点(A点在B点左侧),与y轴交于点C,直线y=-x+b经过点B、C,且B点坐标为(3,0).
(1)求二次函数解析式;
(2)在y轴上是否存在点P,使得以点P、B、C、A为顶点的四边形是梯形?若存在,求出P点坐标;若不存在,请说明理由.

网友回答

解:(1)把B(3,0)代入y=-x+b,
∴b=3,
∴C点坐标为(0,3),
把B(3,0)代入y=ax2-2ax+3,
∴a=-1,
∴二次函数解析式为y=-x2+2x+3.

(2)当AP1∥CB时,直线过点A(-1,0),
设AP1所在直线解析式为y=-x+b,
把点A代入b=-1,
∴P1点坐标是(0,-1).
当P2B∥AC时,设AC所在直线为y=kx+b,
把点A(-1,0),C(0,3)代入得,
∴AC所在直线为y=3x+3,
又∵P2B过点B(3,0),设P2B所在直线为y=kx+b,
∴P2B所在直线为y=3x-9,
∴P2点坐标是(0,-9),
综上所述存在这样的点P使得以P、B、C、A为顶点的四边形是梯形,
点P的坐标是(0,-1),(0,-9).
解析分析:(1)把B(3,0)代入y=-x+b得一次函数关系式,从而求出C点坐标,把B(3,0),C(0,3)代入抛物线解析式可确定解析式;(2)依题意可求直线AC,BC的解析式,画图分析,梯形的平行边只可能是:AP∥BC、BP∥AC,利用平行直线的解析式的关系设直线解析式,分别把已知点代入可求直线AP、BP的解析式,分别令x=0,可求P点坐标.

点评:本题考查了点的坐标求法及一次函数解析式,二次函数解析式确定的方法,同时根据梯形性质探求梯形第四个顶点坐标,需要注意的是平行直线的解析式一次项系数相同,常数项不同.
以上问题属网友观点,不代表本站立场,仅供参考!