如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点P、C,与两坐标轴分别相交于点A、B,CD⊥x轴于点D,且OA=OB=OD=1.(1)求一次函数与反比例

发布时间:2020-08-07 11:32:22

如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点P、C,与两坐标轴分别相交于点A、B,CD⊥x轴于点D,且OA=OB=OD=1.
(1)求一次函数与反比例函数的解析式;
(2)求点P的坐标;
(3)根据图象直接写出x为值时,kx+b>.

网友回答

解:(1)∵OA=OB=1,
∴点A坐标为(-1,0),B点坐标为(0,1),
将A(-1,0),B(0,1)代入y=kx+b得,
∴一次函数的解析式为y=x+1;
∵OD=1,CD⊥x轴,
∴C点的横坐标为1,
把x=1代入y=x+1得y=2,
∴C(1,2),
把C点代入y=得m=1×2=2,
∴反比例函数的解析式为y=;

(2)解方程组得或,
∴P点坐标为(-2,-1);

(3)由图象可知:x>1或-2<x<0.
解析分析:(1)先写出点A坐标为(-1,0),B点坐标为(0,1),再利用待定系数法求一次函数的解析式;接着通过一次函数的解析式确定C点坐标,然后利用待定系数法求反比例函数的解析式;
(2)解由一次函数与反比例函数的解析式所组成的方程组即可得到P点坐标;
(3)观察图象得到当x>1或-2<x<0,函数y=kx+b的图象都在y=的图象上方,即有kx+b>.

点评:本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两个函数的解析式.也考查了待定系数法求函数解析式和观察图象的能力.
以上问题属网友观点,不代表本站立场,仅供参考!