但愿看得懂- - 答案是1/x-5
网友回答
1/(x-1)+1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4)+1/(x-4)(x-5)
=1/(x-1)+1/(x-2)-1/(x-1)]+[1/(x-3)-1/(x-2)]+[1/(x-4)-1/(x-3)]+[1/(x-5)-1/(x-4)]
=1/(x-1)+1/(x-2)-1/(x-1)+1/(x-3)-1/(x-2)+1/(x-4)-1/(x-3)+1/(x-5)-1/(x-4)
=1/(x-5)
======以下答案可供参考======
供参考答案1:
但愿看得懂- - 答案是1/x-5 (图2)供参考答案2:
你依次相加就OK啦
先1/(x-1)与1/(x-1)(x-2)相加得到1/(x-2);
在用得到的1/(x-2)与1/(x-2)(x-3)相加得到1/(x-3);
以此类推扒拉扒拉。。。
就得到1/(x-5)