用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________,这

发布时间:2020-08-08 09:38:06

用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________,这时可判断x0∈________.

网友回答

(0,0.5)    f(0.25)    (0.25,0.5)
解析分析:本题考查的是函数零点存在定理及二分法求函数零点的步骤,由f(0)<0,f(0.5)>0,我们根据零点存在定理,易得区间(0,0.5)上存在一个零点,再由二分法的步骤,第二次应该计算区间中间,即0.25对应的函数值,判断符号,可以进行综合零点的范围.

解答:由二分法知x0∈(0,0.5),
取x1=0.25,
这时f(0.25)=0.253+3×0.25-1<0,
故x0∈(0.25,0.5).
以上问题属网友观点,不代表本站立场,仅供参考!