如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.(1)求⊙P上劣弧

发布时间:2020-08-08 03:15:45

如图,在直角坐标系中,以点P(1,-1)为圆心,2为半径作圆,交x轴于A、B两点,抛物线y=ax2+bx+c(a>0)过点A、B,且顶点C在⊙P上.
(1)求⊙P上劣弧AB的长;
(2)求抛物线的解析式;
(3)在抛物线上是否存在一点D,使线段OC与PD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

网友回答

解:(1)如图,连接PB,过P作PM⊥x轴,垂足为M,
在Rt△PMB中,PB=2,PM=1,
∴∠MPB=60°,
∴∠APB=120°
的长=;

(2)在Rt△PMB中,PB=2,PM=1,则MB=MA=,又OM=1,
∴A(1-,0),B(1+,0),
由抛物线及圆的对称性得知点C在直线PM上,
则C(1,-3).
点A、B、C在抛物线上,则
解之得,
∴抛物线解析式为y=x2-2x-2;

(3)假设存在点D,使OC与PD互相平分,则四边形OPCD为平行四边形,且PC∥OD,
又PC∥y轴,
∴点D在y轴上,
∴OD=2,即D(0,-2),
又点D(0,-2)在抛物线y=x2-2x-2上,
故存在点D(0,-2),使线段OC与PD互相平分.
解析分析:(1)求劣弧AB的长,就要先知道劣弧AB所对的圆心角的度数.过P作AB的垂线设垂足为M,那么在Rt△PMB中,根据圆的半径及P点的纵坐标即可求出∠BPM的度数,也就能求出∠APB的度数.然后根据弧长公式即可求出劣弧AB的长;
(2)在Rt△PMB中,根据PB即半径的长以及PM即P点纵坐标的绝对值即可求出BM的长,也就求出了AB的值,由于A、B两点关于直线x=1对称,由此可确定A、B两点的坐标.根据圆和抛物线的对称性,C点必在直线PM上,根据P点的坐标和圆的半径的长即可得出C点的坐标.根据求出的A、B、C三点的坐标,可用待定系数法求出抛物线的解析式;
(3)根据平行四边形的判定和性质可知:当线段OC与PD互相平分时,四边形OPCD是平行四边形,因此D点在y轴上,且OD=PC=2,因此D点的坐标为(0,-2)然后代入抛物线的解析式中即可判断出D是否在抛物线上.

点评:本题着重考查了待定系数法求二次函数解析式、弧长计算公式、平行四边形的判定和性质等知识点,综合性强,考查学生数形结合的数学思想方法.
以上问题属网友观点,不代表本站立场,仅供参考!