梯形ABCD中,AB∥DC,AD=BC,以AD为直径的⊙O交AB于E,⊙O的切线EF交BC于F,求证:(1)EF⊥BC;(2)BF?BC=BE?AE.

发布时间:2020-08-10 14:52:19

梯形ABCD中,AB∥DC,AD=BC,以AD为直径的⊙O交AB于E,⊙O的切线EF交BC于F,求证:
(1)EF⊥BC;
(2)BF?BC=BE?AE.

网友回答

证明:(1)连接OE,
∵∠DEF+∠DEO=90°,∠ADE+∠OEA=90°,
∴∠DEF=∠OEA.
∵OA=OE,AD=BC,
∴∠OEA=∠A=∠B.
∴∠A=∠B=∠DEF.
∵∠DEF+∠BEF=90°,
∴∠BEF+∠B=90°.
∴EF⊥BC;

(2)∵∠A=∠B,∠AED=∠BFE=90°,
∴△ADE∽△BEF.
∴.
∵AD=BC,
∴.
∴BF?BC=BE?AE.
解析分析:(1)根据已知利用切线的性质可得到∠BEF+∠B=90°,即EF⊥BC;
(2)利用两组角对应相等的两个三角形相似得到△ADE∽△BEF,再根据相似三角形的对应边成比例和AD=BC,即可得到BF?BC=BE?AE.

点评:此题考查了相似三角形的性质与判定,切线的性质等知识及其运用能力.
以上问题属网友观点,不代表本站立场,仅供参考!