把x2(x+1)-y(xy+x)分解因式为
A.x(x-y)(x+y+1)
B.x(x+y)(x-y+1)
C.x(x-y)(x-y-1)
D.x(x-y)(x+y-1)
网友回答
A解析分析:先提取多项式xy+x中的公因式x,发现前后项有公因式x,再提取公因式x之后,对余下的多项式进行分组分解.解答:x2(x+1)-y(xy+x)=x2(x+1)-xy(y+1)=x(x2+x-y2-y)=x[(x2-y2)+(x-y)]=x[(x+y)(x-y)+(x-y)]=x(x-y)(x+y+1).故选A.点评:本题考查了提公因式法、运用公式法及分组分解法分解因式,难度中等.关键是通过观察,发现前后项有公因式x.