设a,b,c为实数,且a≠0.抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,且抛物线的顶点在直线y=-1上.若A,B,C三点构成一个直角三角形,求这个直角三角形的面积的最大值.
网友回答
解:设y=ax2+bx+c交y轴于点C(0,c),c≠0,交x轴于点A(x1,0)、B(x2,0),且x1<0<x2,
由△ABC是直角三角形知,点C必为直角顶点,且c2=(-x1)x2=-x1x2(射影定理的逆定理),
由根与系数的关系得,x1+x2=-,x1?x2=,
所以c2=-,
∴c=-,
∵=-1,
∴4a=4+b2,且a≥1,
∴S△ABC=×|c|×|x1-x2|
=
=
=≤1,
当且仅当a=1,b=0,c=-1时等号成立,因此,Rt△ABC的最大面积是1.
解析分析:先根据已知条件设出抛物线与x轴的交点,由射影定理的逆定理可求出c2=(-x1)x2=-x1x2,由根与系数的关系及抛物线的顶点坐标可求出4a=4+b2,且a≥1,再由三角形的面积公式及a的取值范围可求出其最大面积.
点评:此题主要考查了抛物线与x轴的交点,以及一元二次方程根与系数的关系,难度较大,综合性较强.