如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是A.abc<0B.2a+b<0C.a-b+c<0D.

发布时间:2020-08-06 01:53:48

如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是A.abc<0B.2a+b<0C.a-b+c<0D.4ac-b2<0

网友回答

D
解析分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解答:A、根据图示知,抛物线开口方向向上,则a>0.
抛物线的对称轴x=-=1>0,则b<0.
抛物线与y轴交与负半轴,则c<0,
所以abc>0.
故本选项错误;
B、∵x=-=1,
∴b=-2a,
∴2a+b=0.
故本选项错误;
C、∵对称轴为直线x=1,图象经过(3,0),
∴该抛物线与x轴的另一交点的坐标是(-1,0),
∴当x=-1时,y=0,即a-b+c=0.
故本选项错误;
D、根据图示知,该抛物线与x轴有两个不同的交点,则△=b2-4ac>0,则4ac-b2<0.
故本选项正确;
故选D.

点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
以上问题属网友观点,不代表本站立场,仅供参考!