如图,CD是直角三角形ABC的斜边AD上的高,I1、I2分别是△ADC、△BDC的内心,若AC=3,BC=4,则I1I2=________.

发布时间:2020-08-08 13:44:51

如图,CD是直角三角形ABC的斜边AD上的高,I1、I2分别是△ADC、△BDC的内心,若AC=3,BC=4,则I1I2=________.

网友回答


解析分析:首先作I1E⊥AB于E,I2F⊥AB于F.在直角三角形ABC中,利用勾股定理求得AB的值,再运用射影定理求得AD、BD的长.因为I1E为直角三角形ACD的内切圆的半径,即可求得I1E的值.连接DI1、DI2,则DI1、DI2分别是∠ADC和∠BDC的平分线,利用垂直的定义,可得到I1D⊥I2D.利用在直角三角形中,直角边也对应角的关系,求得DI1、DI2的值,进而求得I1I2的值.

解答:解:作I1E⊥AB于E,I2F⊥AB于F,
在直角三角形ABC中,AC=3,BC=4,AB==5,
又∵CD⊥AB,由射影定理可得AD==,
∴BD=AB-AD=,CD==,
∵I1E为直角三角形ACD的内切圆的半径,
∴I1E=(AD+CD-AC)=,
连接DI1、DI2,则DI1、DI2分别是∠ADC和∠BDC的平分线,
∵∠I1DC=∠I1DA=∠I2DC=∠I2DB=45°,
∴∠I1DI2=90°,
∴I1D⊥I2D,DI1===,
同理,可求得I2F=,DI2=,
∴I1I2==.

点评:本题考查内切圆与内心、勾股定理、解直角三角形.解决本题的基本思路是首先求得两个内切圆I1、I2的半径,再利用勾股定理求得DI1、DI2,最后在证明I1D⊥I2D的基础上求得I1I2的值.
以上问题属网友观点,不代表本站立场,仅供参考!