已知定义在R上的函数y=f(x)为奇函数,且y=f(x+1)为偶函数,f(1)=1,则f(3)+f(4)=________.
网友回答
-1
解析分析:根据y=f(x+1)为偶函数得f(-x+1)=f(x+1),然后根据奇函数的性质和赋值法求出f(3)与f(4)的值即可.
解答:∵y=f(x+1)为偶函数
∴f(-x+1)=f(x+1)
令x=2得f(3)=f(-2+1)=f(-1)=-f(1)=-1
∵定义在R上的函数y=f(x)为奇函数
∴f(0)=0
令x=1得f(2)=f(-1+1)=f(0)=0
令x=3得f(4)=f(-3+1)=f(-2)=-f(2)=0
∴f(3)+f(4)=-1+0=-1
故