如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a-t)2+|b-t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB

发布时间:2020-08-08 20:31:53

如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a-t)2+|b-t|=0(t>0).
(1)证明:OB=OC;
(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;
(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.

网友回答

(1)解:∵a,b满足(a-t)2+|b-t|=0(t>0).
∴a-t=0,b-t=0,
∴a=t,b=t,
∴a=b,
∵B(t,0),点C(0,t)
∴OB=OC;
(2)证明:延长AF至T,使TF=AF,连接TC,TO,
∵F为CE中点,
∴CF=EF,
在△TCF和△AEF中

∴△TCF≌△AEF(SAS),
∴CT=AE,∠TCF=∠AEF,
∴TC∥AD,
∴∠TCD=∠CDA,
∵AB=AE,
∴TC=AB,
∵AD⊥AB,OB⊥OC,
∴∠COB=∠BAD=90°,
∴∠ABO+∠ADO=180°,
∵∠ADO+∠ADC=180°,
∴∠ADC=∠ABC,
∵∠TCD=∠CDA,
∴∠TCD=∠ABO,
在△TCO和△ABO中

∴△TCO≌△ABO(SAS),
∴TO=AO,∠TOC=∠AOB,
∵∠AOB+∠AOC=90°,
∴∠TOC+∠AOC=90°,
∴△TAO为等腰直角三角形,
∴∠OAF=45°;

(3)解:连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,
∵B和B′关于关于y轴对称,C在轴上,
∴CB=CB′,
∴∠CBB′=∠CB′B,
∵MH∥CN,
∴∠MHB=∠CB′B,
∴∠MHB=∠CBB′,
∴MH=BM,
∵BM=B′N,
∴MH=B′N,
∵MH∥CN,
∴∠NB′T=∠MHT,
在△NTB′和△MTH中

∴△NTB′≌△MTH,
∴TN=MT,又TQ⊥MN,
∴MQ=NQ,
∵CQ垂直平分BB′,
∴BQ=B′Q,
∵在∴△NQB′和△MQB中

∴△NQB′≌△MQB?(SSS),
∴∠NB′Q=∠CBQ,
而∠NB′Q+∠CB′Q=180°
∴∠CBQ+∠CB′Q=180°
∴∠B′CB+∠B′QB=180°,
又∠B′CB=90°,
∴∠B′QB=90°
∴△BQB′是等腰直角三角形,
∴OQ=OB=t,
∴Q(0,-t).
解析分析:(1)根据a=t,b=t,推出a=b即可;
(2)延长AF至T,使TF=AF,连接TC,TO,证△TCF≌△AEF,推出CT=AE,∠TCF=∠AEF,再证△TCO≌△ABO,推出TO=AO,∠TOC=∠AOB,求出△TAO为等腰直角三角形即可;
(3)连接MQ,NQ,BQ,B′Q,过M作MH∥CN交x轴于H,证△NTB′≌△MTH,推出TN=MT,证△NQB′≌△MQB,推出∠NB′Q=∠CBQ,求出△BQB′是等腰直角三角形即可.

点评:本题考查了全等三角形的性质和判定,坐标与图形性质,等腰三角形的性质,等腰直角三角形的性质和判定,相等垂直平分线,偶次方,绝对值等知识点的综合运用.
以上问题属网友观点,不代表本站立场,仅供参考!