已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.(1)求证:△PBC≌AOC;(2)如果PB=2,点M在⊙O的下半圈上运动(不与

发布时间:2020-08-05 18:56:22

已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.
(1)求证:△PBC≌AOC;
(2)如果PB=2,点M在⊙O的下半圈上运动(不与A、B重合),求当△ABM的面积最大时,AC?AM的值.

网友回答

(1)证明∵PC切⊙O于C,
∴∠PCO=90°,
∴∠PCB+∠BCO=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=90°,
∴∠PCB=∠ACO,
∵AC=PC,
∴∠CPB=∠CAO,
∴△PBC≌△AOC;

(2)设⊙O的半径为r,则:OB=OC=OA=OM=r.
在Rt△PCO中,PO2=PC2+OC2,
∴(PB+OB)2=AC2+OC2,
∴(2+r)2=AC2+r2,
∴AC2=(2+r)2-r2=4+4r,=
在Rt△ABC中,AB2=BC2+AC2,
∴(2r)2=BC2+4+4r,
∵PC切⊙O于C,
∴∠PCB=∠CAP,又∠CPA=∠CAP,
∴∠PCB=∠CPA,
∴PB=BC,
∴(2r)2=PB2+4+4r,
∴r2-r-2=0,∴(r-2)(r+1)=0,
显然,r>0,∴r=2.
∵AB是定值,∴当△ABM的面积最大时,有:OM⊥AO.此时:AM=OA=2.
又PC2=PB×PA=PB(PB+AB)=2(2+2)=8,∴PC=2,∴AC=2.
∴AC×AM=8.

解析分析:(1)由切线的性质和全等三角形的判定方法证明△PBC≌△AOC即可;
(2)设⊙O的半径为r,则:OB=OC=OA=OM=r,在在Rt△PCO中和Rt△ABC中,利用勾股定理得到关于r的方程,求出圆的半径,当△ABM的面积最大时AM=OA=2.
由切割线定理即可求出AC?AM的值.

点评:本题考查了切线的性质、圆周角定理、全等三角形的判定和性质勾股定理的运用以及一元二次方程的运用,题目的综合性强,难度大.
以上问题属网友观点,不代表本站立场,仅供参考!