如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于D点,弦DE∥CB,Q是AB上一动点,CA=1,CD是⊙O半径的倍.
(1)求⊙O的半径R;
(2)当Q从A向B运动的过程中,图中阴影部分的面积是否发生变化?若发生变化,请你说明理由;若不发生变化,请你求出阴影部分的面积.
网友回答
解:(1)根据题意,得CD=R,
由切割线定理,得CD2=CA?CB,3R2=1+2R,解得:R=1或R=-(负数舍去).
即⊙O的半径R为1;
(2)当Q从A向B运动的过程中,图中阴影部分的面积不发生变化.
连接OD、OE;
∵DE∥CB,
∴S△ODE=S△QDE;
∴S阴影=S扇形ODE;
∵CD切⊙O于D点,
∴DO⊥CD,
∴∠CDO=90°,
∵=,
∴∠DCO=30°,
∴∠COD=60°,
∴∠ODE=60°,
∴△ODE是等边三角形;
∴S阴影=S扇形ODE=.
解析分析:(1)根据切割线定理即可列方程求解;
(2)据弦DE∥CB,可以连接OD,OE,则阴影部分的面积就转化为扇形ODE的面积.所以阴影部分的面积不变.只需根据直角三角形的边求得角的度数即可.
点评:熟练运用切割线定理,能够把不规则图形的面积进行转换是解题的关键.