观察下列图形,并解答问题:(1)图①中,有______条直线,______对对顶角;(2)图②中,有______条直线,______对对顶角;(3)图③中,有____

发布时间:2020-08-09 00:29:21

观察下列图形,并解答问题:

(1)图①中,有______条直线,______对对顶角;
(2)图②中,有______条直线,______对对顶角;
(3)图③中,有______条直线,______对对顶角;
(4)猜想:n条直线交于一点时,可形成______对对顶角;
(5)若有2004条直线交于一点,可形成______对对顶角.

网友回答

解:(1)如图a,图中共有1×2=2对对顶角;
(2)如图b,图中共有2×3=6对对顶角;
(3)如图c,图中共有3×4=12对对顶角;
(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,
若有n条直线相交于一点,则可形成(n-1)n对对顶角;
(5)若有2008条直线相交于一点,则可形成(2004-1)×2004=4 014012对对顶角.
解析分析:由图示可得,(1)两条直线相交于一点,形成2对对顶角;
(2)三条直线相交于一点,形成6对对顶角,
(3)4条直线相交于一点,形成12对对顶角;
依次可找出规律:(4)若有n条直线相交于一点,则可形成(n-1)n对对顶角;
(5)将n=2008代入(n-1)n,可得2008条直线相交于一点可形成的对顶角的对数.

点评:此题主要考查了多条直线相交于一点,所形成的对顶角的个数的计算规律.即若有n条直线相交于一点,则可形成(n-1)n对对顶角.
以上问题属网友观点,不代表本站立场,仅供参考!