如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.
(1)求证:△PQE∽△PMF;
(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;
(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.
网友回答
(1)证明:∵PE⊥BC,PF⊥AC,∠C=90°,
∴∠PEQ=∠PFM=90°,∠EPF=90°,即∠EPQ+∠QPF=90°,
又∵∠FPM+∠QPF=∠QPM=90°,
∴∠EPQ=∠FPM,
∴△PQE∽△PMF;
(2)解:相等.
∵PB=BQ,∠B=60°,
∴△BPQ为等边三角形,
∴∠BQP=60°,
∵△PQE∽△PMF,
∴∠PMF=∠BQP=60°,
又∠A+∠APM=∠PMF,
∴∠APM=∠A=30°,
∴PM=MA;
(3)解:AB===20,BP=x,则AP=20-x,
PE=xcos30°=x,PF=(20-x)?,
S△PEM=PE×PF,
∴y=?x?
=(20x-x2)
=-(x-10)2+(0≤x≤10).
∴当x=10时,函数的最大值为.
解析分析:(1)由∠EPF=∠QPM=90°,利用互余关系证明△PQE∽△PMF;
(2)相等.运动速度相等,时间相同,则BP=BQ,∠B=60°,△BPQ为等边三角形,可推出∠MPA=∠A=30°,等角对等边;
(3)由面积公式得S△PEM=PE×PF,解直角三角形分别表示PE,PF,列出函数式,利用函数的性质求解.
点评:本题考查了相似三角形的判定与性质,等边三角形的判定与性质,解直角三角形,二次函数的性质.关键是根据题意判断相似三角形,利用相似比及解直角三角形得出等量关系.