如图,已知∠1+∠2=180°,试判断∠AED与∠C的大小关系,并说明理由(根据解题的要求,在横线处或括号内填写适当的内容或理由).解∠AED=∠C.理由如下:∵∠1

发布时间:2020-08-07 14:51:21

如图,已知∠1+∠2=180°,试判断∠AED与∠C的大小关系,并说明理由(根据解题的要求,在横线处或括号内填写适当的内容或理由).
解∠AED=∠C.理由如下:
∵∠1+∠4=180°,∠1+∠2=180°,
∴∠2=∠4,
∴________(两直线平行,内错角相等)
∵∠3=∠B,
∴∠B=∠ADE,
∴DE∥BC(________)
∴∠AED=∠C(________).

网友回答

∠3=∠ADE    同位角相等两直线平行    两直线平行,同位角相等
解析分析:根据平行线的判定方法和平行线的性质填空即可.

解答:证明:∵∠1+∠4=180°,∠1+∠2=180°,
∴∠2=∠4,
∴∠3=∠ADE(两直线平行,内错角相等)
∵∠3=∠B,
∴∠B=∠ADE,
∴DE∥BC( 同位角相等两直线平行)
∴∠AED=∠C( 两直线平行,同位角相等).

点评:本题考查了平行线的判定和性质,其区别和联系为:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行;联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
以上问题属网友观点,不代表本站立场,仅供参考!