如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E;
(1)求证:BE=CE;
(2)若以O、D、E、C为顶点的四边形是正方形,⊙O的半径为r,求△ABC的面积;
(3)若EC=4,BD=,求⊙O的半径OC的长.
网友回答
(1)证明:连接CD,由AC是直径知CD⊥AB;
DE、CE都是切线,所以DE=CE,∠EDC=∠ECD;
又∠B+∠ECD=90°,∠BDE+∠EDC=90°;
所以∠B=∠BDE,所以BE=DE,从而BE=CE;
(2)解:连接OD,
当以O、D、E、C为顶点的四边形是正方形时,DE=EC=OC=OD=r;
从而BE=r,即△ABC是一个等腰直角三角形;
AC=AB=2r,S△ABC=2r2;
(3)解:若EC=4,BD=4,则BC=8;
在Rt△BDC中,cos∠CBD==;所以∠CBD=30°;
在Rt△ABC中,=tan30°,即AC=BCtan30°=8×=,OC==;
另解:设OC=r,AD=x;由EC=4,BD=4得BC=8,DC=4;
则:,解得;即OC=.
解析分析:(1)连接CD,由圆周角定理知CD⊥AB;由切线长定理知DE=DC,则∠EDC=∠ECD,此时发现∠EBD和∠EDB都是等角的余角,所以它们相等,由此可证得BE=DE;
(2)若四边形ODCE是正方形,那么DE、BE、CE、OC的长都和半径相等,即AC=BC=2r,已知了直角三角形的两条直角边,即可根据面积公式求得其面积;
(3)已知了BC(即2EC)、BD的长,可在Rt△BCD中求出∠BCD的度数和CD的长,进而可在Rt△ACD中求出AC的长,也就得到了⊙O的半径.
(也可设出半径和AD的长,利用切割线定理及勾股定理列方程组求解.)
点评:此题主要考查了圆周角定理、正方形的性质、切线长定理及解直角三角形等知识的综合应用能力.