如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若DE=4,AD=6,求⊙O半径.

发布时间:2020-08-10 05:48:54

如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若DE=4,AD=6,求⊙O半径.

网友回答

(1)证明:连接OA.
∵AO=DO,
∴∠OAD=∠ODA.
∵DA平分∠BDE,
∴∠ODA=∠EDA,
∴∠OAD=∠EDA.
∵∠EAD+∠EDA=90°,
∴∠EAD+∠OAD=90°,即∠OAE=90°.
∴OA⊥AE,
∴AE是⊙O的切线.

(2)解:∵BD是⊙O的直径,
∴∠BAD=90°,
∵∠AED=90°,∠ADE=∠ADB,
∴Rt△BAD∽Rt△AED.
∴=.
∴BD===9,
即⊙O是半径为4.5.
解析分析:(1)证明OA⊥AE就能得到AE是⊙O的切线;
(2)通过证明Rt△BAD∽Rt△AED,再利用对应边成比例关系从而求出⊙O半径的长.

点评:主要考查学生对相似三角形的判定及性质的运用,及切线的求法等知识点的掌握情况.
以上问题属网友观点,不代表本站立场,仅供参考!