函数y=f(x)是偶函数,当x>0时,f(x)=x+,且当x∈[-3,-1]时,n≤f(x)≤m,则m-n的最小值为________.

发布时间:2020-08-09 21:37:43

函数y=f(x)是偶函数,当x>0时,f(x)=x+,且当x∈[-3,-1]时,n≤f(x)≤m,则m-n的最小值为________.

网友回答

1
解析分析:利用偶函数的定义求出函数在[-3,-1]上的解析式,利用导数求出函数的最值,求出差.

解答:当x∈[-3,-1]时-x∈[1,3]
∵当x>0时,f(x)=
∴f(-x)=
∵函数y=f(x)是偶函数
∴f(x)=,x∈[-3,-1]
∵f′(x)=-1+=
当-3≤x<-2时,f′(x)<0;当-2<x<-1时,f′(x)>0
所以当x=-2时,函数有最小值4;当x=-3时f(-3)=;
当x=-1时,f(-1)=5所以函数的最大值为5
所以m=5,n=4,
故m-n=1,
以上问题属网友观点,不代表本站立场,仅供参考!