如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.试探究四边形DAEF是平行四边形.
网友回答
解:∵△ABD和△FBC都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC.
又∵BD=BA,BF=BC,
∴△ABC≌△DBF,
∴AC=DF=AE,
同理可证△ABC≌△EFC,
∴AB=EF=AD,
∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).
解析分析:根据题中的等式关系可推出两组对边分别相等,从而可判断四边形DAEF为平行四边形.
点评:本题考查的知识点为:两组对边分别相等的四边形是平行四边形.