如图,在?ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,建立如图所示的直角坐标系,试分别求出B、C、D三点的坐标.

发布时间:2020-08-05 11:17:52

如图,在?ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,建立如图所示的直角坐标系,试分别求出B、C、D三点的坐标.

网友回答

解:点B的坐标为(5,0),
过点D作DE⊥x轴于点E,

在Rt△ADE中,∠DAE=60°,AD=2,
∴AE=1,DE=,
故可得点D的坐标为(-1,),
又∵四边形ABCD是平行四边形,CD=AB=5,
∴点C的坐标为(4,);
综上可得:B(5.0)、C(4,)、D(-1,).
解析分析:过点D作DE⊥x轴于点E,在Rt△ADE中求出AE、DE,继而可得出点D的坐标,由平行四边形的性质可得点C的坐标.

点评:本题考查了平行四边形的性质及勾股定理的知识,属于基础题,注意掌握平行四边形的对边平行且相等.
以上问题属网友观点,不代表本站立场,仅供参考!