如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线l过点A(-1,0),与⊙C相切于点D,求直线l的解析式.
网友回答
解:如图所示,当直线l在x轴的上方时,
连接CD,
∵直线l为⊙C的切线,
∴CD⊥AD.
∵C点坐标为(1,0),
∴OC=1,即⊙C的半径为1,
∴CD=OC=1.
又∵点A的坐标为(-1,0),
∴AC=2,
∴∠CAD=30度.
在Rt△AOB中,OB=OA?tan30°=,
即B(0,),
设直线l解析式为:y=kx+b(k≠0),则,
解得k=,b=,
∴直线l的函数解析式为y=x+.
同理可得,当直线l在x轴的下方时,直线l的函数解析式为y=-x-.
故直线l的函数解析式为y=x+或y=-x-.
解析分析:连接CD,由于直线l为⊙C的切线,故CD⊥AD.C点坐标为(1,0),故OC=1,即⊙C的半径为1,由点A的坐标为(-1,0),可求出∠CAD=30度.作DE⊥AC于E点,则∠CDE=∠CAD=30°,可求出CE=,点B的坐标为(0,).设直线l的函数解析式为y=kx+b,把A,B两点的坐标代入即可求出未知数的值从而求出其解析式.
点评:本题把求一次函数的解析式与圆的性质相结合,增加了题目的难度,解答此题的关键是作出辅助线,构造出直角三角形,利用解直角三角形的知识解答.