【三角恒等变换】三角恒等变换

发布时间:2021-03-26 21:17:27

三角恒等变换 数学

网友回答

【答案】 ·两角和与差的三角函数:
  cos(α+β)=cosα·cosβ-sinα·sinβ
  cos(α-β)=cosα·cosβ+sinα·sinβ
  sin(α+β)=sinα·cosβ+cosα·sinβ
  sin(α-β)=sinα·cosβ-cosα·sinβ
  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
  [编辑本段]·倍角公式:
  sin(2α)=2sinα·cosα
  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
  tan(2α)=2tanα/[1-tan^2(α)]
  [编辑本段]·三倍角公式:
  sin3α=3sinα-4sin^3(α)
  cos3α=4cos^3(α)-3cosα
  [编辑本段]·半角公式:
  sin^2(α/2)=(1-cosα)/2
  cos^2(α/2)=(1+cosα)/2
  tan^2(α/2)=(1-cosα)/(1+cosα)
  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
  [编辑本段]·万能公式:
  sinα=2tan(α/2)/[1+tan^2(α/2)]
  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
  tanα=2tan(α/2)/[1-tan^2(α/2)]
  [编辑本段]·积化和差公式:
  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
  [编辑本段]·和差化积公式:
  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
以上问题属网友观点,不代表本站立场,仅供参考!