函数f(x)是定义在(-2,2)上的奇函数,且在(-2,2)上单调递减,若f(m-1)+f(2m-3)>0,求m的取值范围.
网友回答
解:∵f(m-1)+f(2m-3)>0,
∴f(m-1)>-f(2m-3)…
∵f(x)为奇函数,
∴f(-x)=-f(x)
∴f(m-1)>f(3-2m)…
因为f(x)的定义域为(-2,2),且为减函数
所以有
∴
∴
所以m的取值范围为?…
解析分析:由题意可得f(m-1)>-f(2m-3),结合f(x)为奇函数,可得f(m-1)>f(3-2m),由f(x)的定义域为(-2,2),且为减函数,则有,解不等式可求
点评:本题主要考查了利用奇函数的性质及抽象函数的单调性求解不等式,属于函数知识的综合应用,解题中不要漏掉对函数定义域的考虑