y=√(x^2-6x+13) √(x^2+4x+5)求y=√(x^2-6x+13)-√(x^2+4x

发布时间:2021-03-16 07:25:24

y=√(x^2-6x+13) √(x^2+4x+5)求y=√(x^2-6x+13)-√(x^2+4x+5)的值域 和 y=√(x^2-6x+13)+√(x^2+4x+5)的值域y可以看成是点(x,0)到点(3,2)与(-2,1)距离的差值?为什么?图可以画出来但是不知道为什么会有y可以看成是点(x,0)到点(3,2)与(-2,1)距离的差值第2个题有是怎么个意思?

网友回答

这两道题要用数形结合的方法解决,先看第一题,原式可化为y=根号下(x-3)^2+4+根号下(x+2)^2+5,所以y可以看成是点(x,0)到点(3,2)与(-2,1)距离的差值,你画出图像就会很容易发现当(x,0) (-2,1) (3,2)在同一条直线上时y有最大值=根号下5^2+1=根号26,所以y=根号34.能看明白吧^_^
以上问题属网友观点,不代表本站立场,仅供参考!