把一副三角板如下图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1C

发布时间:2020-08-09 16:10:28

把一副三角板如下图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.
(1)求∠OFE1的度数;
(2)求线段AD1的长.

网友回答

解:(1)如图所示,
∵∠3=15°,∠E1=90°,
∴∠1=∠2=75°,
又∵∠B=45°,
∴∠OFE1=∠B+∠1=45°+75°=120°;

(2)∵∠OFE1=120°,
∴∠D1FO=60°,
∵∠C?D1E1=30°,
∴∠4=90°,
又∵AC=BC,AB=6cm,
∴OA=OB=3cm,
∵∠ACB=90°,
∴CO=AB=×6=3cm,
又∵CD1=7cm,
∴OD1=CD1-OC=7-3=4cm,
∴在Rt△AD1O中,
AD1===5cm.
解析分析:(1)如图所示,∠3=15°,∠E1=90°,∠1=∠2=75°,所以,可得∠OFE1=∠B+∠1=45°+75°=120°;
(2)由∠OFE1=∠120°,得∠D1FO=60°,所以∠4=90°,由AC=BC,AB=6cm,得OA=OB=OC=3cm,所以,OD1=CD1-OC=7-3=4cm,在Rt△AD1O中,AD1===5cm.

点评:本题主要考查了勾股定理和旋转的性质,能熟练应用勾股定理,并且掌握旋转前后的两个图形完全相等.
以上问题属网友观点,不代表本站立场,仅供参考!