已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.
(1)填空:与△ABM相似的三角形是△______,BM?DN=______;(用含a的代数式表示)
(2)求∠MCN的度数;
(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.
网友回答
解:(1)∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵BM,DN分别平分正方形的两个外角,
∴∠CBM=∠CDN=45°,
∴∠ABM=∠ADN=135°,
∵∠MAN=45°,
∴∠BMA=∠NAD,
∴△ABM∽△NDA,
∴
∴BM?DN=a2.
(2)由(1)△ABM∽△NDA可得BM:DA=AB:ND.
∵四边形ABCD是正方形,
∴AB=DC,DA=BC,∠ABC=∠BCD=∠ADC=∠BAD=90°.
∴BM:BC=DC:ND.
∵BM,DN分别平分正方形ABCD的两个外角,
∴∠CBM=∠NDC=45°.
∴△BCM∽△DNC.
∴∠BCM=∠DNC.
∴∠MCN=360°-∠BCD-∠BCM-∠DCN=270°-(∠DNC+∠DCN)=270°-(180°-∠CDN)=135°.
(3)线段BM,DN和MN之间的等量关系是BM2+DN2=MN2.
证明:如图,将△AND绕点A顺时针旋转90°得到△ABF,连接MF.则
△ABF≌△ADN.?
∴∠1=∠3,AF=AN,BF=DN,∠AFB=∠AND.
∴∠MAF=∠1+∠2=∠2+∠3=∠BAD-∠MAN=45°.
∴∠MAF=∠MAN.
又∵AM=AM,
∴△AMF≌△AMN.
∴MF=MN.
可得∠MBF=(∠AFB+∠1)+45°=(∠AND+∠3)+45°=90°.
∴在Rt△BMF中,BM2+BF2=FM2.
∴BM2+DN2=MN2.
解析分析:(1)如图(3)由条件可以得出∠BMA=∠3,∠ABM=∠ADN=135°,就可以得出△ABM∽△NDA,利用相似三角形的性质就可以的得出BM?DN=a2.
(2)由△ABM∽△NDA,可以得出BM:DA=AB:ND,再由正方形的性质通过等量代换就可以得出△BCM∽△DNC.利用角的关系和圆周角的度数就可以求出结论.
(3)将△AND绕点A顺时针旋转90°得到△ABF,连接MF,证明△ABF≌△ADN.利用边角的关系得出△BMF是直角三角形,由勾股定理就可以得出结论.
点评:此题考查了相似三角形的判定与性质以及正方形的性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.