已知函数f(x)定义域是{x|x},且f(x)+f(2-x)=0,f(x+1)=-,当时:f(x)=3x.
(1)判断f(x)的奇偶性,并说明理由;
(2)求f(x)在(0,)上的表达式;
(3)是否存在正整,使得x∈(2k+,2k+1)时,log3f(x)>x2-kx-2k有解,并说明理由.
网友回答
解:(1)∵f(x+2)=f(x+1+1)=-=f(x),
所以f(x)的周期为2…
所以f(x)+f(2-x)=0?f(x)+f(-x)=0,
所以f(x)为奇函数.…
(2)任取x∈(0,)?-x∈(-,0)?1-x∈(,1).
∴f(x)=-f(-x)=
∴f(x)=.…
(3)任取x∈(2k+,2k+1)?x-2k∈(,1),
∴f(x)=f(x-2k)=3x-2k;
∴log3f(x)>x2-kx-2k有解
即x2-(k+1)x<0在x∈(2k+,2k+1)上有解(k∈N+),
所以:(0,k+1)∩(2k+,2k+1)≠?,
故有k+1>2k+,无解.
故不存在这样的正整数.…
解析分析:(1)先根据f(x+1)=-,得到周期为2;再结合f(x)+f(2-x)=0即可判断f(x)的奇偶性;
(2)任取x∈(0,)?-x∈(-,0)?1-x∈(,1);再结合奇函数的性质以及当时:f(x)=3x即可得到结论;
(3)先根据所求结论得到f(x)=f(x-2k)=3x-2k;把不等式转化为x2-(k+1)x<0在x∈(2k+,2k+1)上有解(k∈N+),得到(0,k+1)∩(2k+,2k+1)≠?,即可求出结论.
点评:本题主要考查函数奇偶性的判断.具备奇偶性的函数,其定义域必关于原点对称,再依据奇函数、偶函数的定义做出判断.